歡迎光臨 桂林鴻程礦山設(shè)備制造有限責(zé)任公司

鋰電負(fù)極材料分類(lèi)


石墨類(lèi)負(fù)極材料磨粉機(jī)

石墨類(lèi)負(fù)極材料磨粉機(jī)

鋰電負(fù)極材料分類(lèi)

(1)石墨類(lèi)負(fù)極材料

石墨分為天然石墨和人造石墨,天然石墨具有儲(chǔ)量大、成本低、安全無(wú)毒等優(yōu)點(diǎn)。但天然石墨的顆粒外表面反應(yīng)活性不均勻,晶粒粒度較大,在充放電過(guò)程中表面晶體結(jié)構(gòu)容易被破壞,存在表面SEI膜覆蓋不均勻,導(dǎo)致初始庫(kù)侖效率低、倍率性能不好等缺點(diǎn)。人造石墨由石油焦、瀝青焦、冶金焦、針狀焦等焦炭材料經(jīng)高溫石墨化處理得到。其中針狀焦作為一種新型炭材料具有良好的石墨微晶結(jié)構(gòu),針狀的紋理走向是制備鋰離子電池負(fù)極材料的理想碳源。其具備易于石墨化、電導(dǎo)率高、價(jià)格相對(duì)低廉、灰分低等優(yōu)點(diǎn),同時(shí)又具有足夠高的鋰嵌入量和很好的鋰脫嵌可逆性,以保證高電壓、大容量和循環(huán)壽命長(zhǎng)及電流密度的要求。

中間相碳微球(MCMB)是一種重要的人造石墨材料。MCMB最早出現(xiàn)可以追溯到20世紀(jì)60年代,研究人員在研究煤焦化瀝青中發(fā)現(xiàn)一些光學(xué)各向異性的小球體,實(shí)際上這些小球體就被認(rèn)為是MCMB的雛形。1973年,Yamada等從中間相瀝青中制備出微米級(jí)球形碳材料,命名為中間相碳微球,之后引起了碳材料研究者的極大興趣,并進(jìn)行深入研究。1993年,大阪煤氣公司將MCMB用于鋰離子電池負(fù)極并成功實(shí)現(xiàn)商業(yè)化。后來(lái),我國(guó)上海杉杉和天津鐵城等單位相繼研發(fā)成功并商業(yè)化。商業(yè)化中間相炭微球的直徑通常在5~40μm之間,球表面光滑,具有較高的壓實(shí)密度。中間相炭微球優(yōu)點(diǎn)包括:(1)球形顆粒有利于形成高密度堆積的電極涂層,且比表面積小,有利于降低副反應(yīng),(2)球內(nèi)部碳原子層徑向排列,Li+容易嵌入脫出,大電流充放電性能好。

(2)硬碳和軟碳負(fù)極材料

除了石墨以外,碳材料中的硬碳、軟碳也是很重要的負(fù)極材料,不同的是硬碳和軟碳的結(jié)晶度低,片層結(jié)構(gòu)度沒(méi)有石墨規(guī)整有序。

硬碳是難以石墨化的碳,通常為高分子材料熱裂解制得。常見(jiàn)的硬碳有樹(shù)脂碳、有機(jī)聚合物熱解碳、炭黑、生物質(zhì)碳等。此類(lèi)碳材料具有多孔結(jié)構(gòu),目前認(rèn)為其主要通過(guò)Li+可逆地在微孔中吸附/脫附及表面吸附/脫附進(jìn)行儲(chǔ)鋰。硬碳的可逆比容量可達(dá)300~500mAhg-1,但是硬碳首次不可逆容量很高,電壓平臺(tái)滯后,壓實(shí)密度低,容易產(chǎn)氣也是其不可忽視的缺點(diǎn)。近幾年的研究主要集中在不同碳源的選擇、調(diào)控工藝、與高容量材料復(fù)合、包覆等。

軟碳即易石墨化碳,指在2500℃以上的高溫下能石墨化的無(wú)定形碳。軟碳結(jié)晶度低,晶粒尺寸小,晶面間距較大,與電解液相容性好,倍率性能好。軟碳首次充放電時(shí)不可逆容量較高,輸出電壓較低,無(wú)明顯的充放電平臺(tái),因此一般不獨(dú)立作為負(fù)極材料使用,通常作為負(fù)極材料包覆物或者組分使用。

(3)鈦酸鋰負(fù)極材料

鈦酸鋰是一種由金屬鋰和低電位過(guò)渡金屬鈦組成的復(fù)合氧化物,屬于AB2X4系列的尖晶石型固溶體。鈦酸鋰的理論克容量175mAhg-1,實(shí)際克容量大于160mAhg-1,是目前已經(jīng)商業(yè)化的負(fù)極材料之一。鈦酸鋰自1996年被報(bào)道后,業(yè)界對(duì)其研究熱情一直長(zhǎng)盛不衰。它的優(yōu)點(diǎn)包括:(1)零應(yīng)變性,鈦酸鋰晶胞參數(shù)a=0.836nm,充放電時(shí)鋰離子的嵌入脫出對(duì)其晶型結(jié)構(gòu)幾乎不產(chǎn)生影響,避免了充放電過(guò)程中材料伸縮導(dǎo)致的結(jié)構(gòu)變化,從而具有極高的電化學(xué)穩(wěn)定性和循環(huán)壽命;(2)無(wú)析鋰風(fēng)險(xiǎn),鈦酸鋰對(duì)鋰電位高達(dá)1.55V,首次充電不形成SEI膜,首次效率高,熱穩(wěn)定性好,界面阻抗低,低溫充電性能優(yōu)異,可-40℃充電;(3)三維快離子導(dǎo)體,鈦酸鋰是三維尖晶石結(jié)構(gòu),嵌鋰空間遠(yuǎn)大于石墨層間距,離子電導(dǎo)比石墨材料高一個(gè)數(shù)量級(jí),特別適合大倍率充放電。但是,其比容量低、比能量密度低、且充放電過(guò)程將導(dǎo)致電解液分解脹氣。目前,鈦酸鋰的商業(yè)化量依然很少,與石墨相比優(yōu)勢(shì)不明顯。為抑制鈦酸鋰的脹氣現(xiàn)象,目前大量的報(bào)道仍集中在對(duì)其進(jìn)行表面包覆改性。

(4)硅基負(fù)極材料

石墨負(fù)極材料雖有高電導(dǎo)率和穩(wěn)定性的優(yōu)勢(shì),但在能量密度方面的發(fā)展已接近其理論比容量(372mAhg-1)。硅被認(rèn)為是最有前景的負(fù)極材料之一,其理論克容量可達(dá)4200mAhg-1,超過(guò)石墨材料10倍以上,同時(shí)硅的嵌鋰電位高于碳材料,充電析鋰風(fēng)險(xiǎn)小,更加安全。但硅負(fù)極材料在嵌脫鋰過(guò)程中會(huì)發(fā)生近300%的體積膨脹,極大地限制了硅基負(fù)極的商業(yè)化應(yīng)用。硅基負(fù)極材料主要分為硅碳負(fù)極材料和硅氧負(fù)極材料兩大類(lèi)。目前主流方向是采用石墨作為基體,摻入質(zhì)量分?jǐn)?shù)5%~10%的納米硅或SiOx組成復(fù)合材料并進(jìn)行碳包覆,抑制顆粒體積變化,提高循環(huán)穩(wěn)定性。

(5)金屬鋰負(fù)極材料

金屬鋰負(fù)極是最早研究的鋰電池負(fù)極,但由于其復(fù)雜性,過(guò)去的研究進(jìn)展較慢,隨著技術(shù)的進(jìn)步,金屬鋰負(fù)極研究也在提升。金屬鋰負(fù)極具有3860mAhg-1的理論比容量和-3.04V的超負(fù)電極電勢(shì),是一種具有極高能量密度的負(fù)極。但鋰的高反應(yīng)活性和充放電時(shí)不均勻的沉積、脫出過(guò)程,導(dǎo)致其循環(huán)過(guò)程中會(huì)粉化和鋰枝晶生長(zhǎng),造成電池性能快速衰減。針對(duì)金屬鋰的問(wèn)題,研究者采取抑制鋰負(fù)極枝晶生長(zhǎng)的方法,提高其安全性和循環(huán)壽命,包括構(gòu)筑人工固態(tài)電解質(zhì)界面膜(SEI膜)、鋰負(fù)極結(jié)構(gòu)設(shè)計(jì)、電解液修飾等方法。

(6)有機(jī)負(fù)極材料

石墨類(lèi)負(fù)極、硅基負(fù)極、鈦酸鋰負(fù)極、金屬鋰負(fù)極等都屬無(wú)機(jī)負(fù)極材料。無(wú)機(jī)負(fù)極材料制備過(guò)程復(fù)雜,成本高,難以回收利用,而且還可能產(chǎn)生環(huán)境污染。在負(fù)極材料研發(fā)方向上有人將目光從無(wú)機(jī)材料轉(zhuǎn)向有機(jī)材料。

所謂有機(jī)材料主要由質(zhì)量輕且成本低的C、H、O、N、S等元素組成,這類(lèi)元素可以從生物或植物等可再生資源中獲得,并且能夠循環(huán)利用。這類(lèi)材料在充放電過(guò)程中可以發(fā)生可逆的氧化還原反應(yīng),作為鋰離子電池負(fù)極在反應(yīng)過(guò)程中有多個(gè)電子參與,能夠向外電路提供很高的充放電容量。與無(wú)機(jī)材料相比,有機(jī)材料具有更柔軟的機(jī)械性能,方便在柔性或可拉伸電池中應(yīng)用。由于這類(lèi)材料具有成本低、環(huán)境友好、結(jié)構(gòu)可控和很高的電化學(xué)容量等優(yōu)點(diǎn),也受到研究者關(guān)注。典型的材料有導(dǎo)電聚合物、金屬有機(jī)框架化合物和有機(jī)小分子材料等。



版權(quán)所有@2005-2024 桂林鴻程礦山設(shè)備制造有限責(zé)任公司 地址:桂林市西城經(jīng)濟(jì)開(kāi)發(fā)區(qū)秧塘工業(yè)園 網(wǎng)站備案號(hào):桂ICP備11002237號(hào)-4

版權(quán)所有@2005-2020 桂林鴻程礦山設(shè)備制造有限責(zé)任公司 地址:桂林市西城經(jīng)濟(jì)開(kāi)發(fā)區(qū)秧塘工業(yè)園 咨詢(xún)電話(huà): 0773-3661663 網(wǎng)站備案號(hào):桂ICP備11002237號(hào)-4